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Abstract: Neural network-based image classification is widely used in life science applications.
However, it is essential to extrapolate a correct classification method for unknown images, where
no prior knowledge can be utilised. Under a closed set assumption, unknown images will be
inevitably misclassified, but this can be genuinely overcome choosing an open-set classification
approach, which first generates an in-distribution of identified images to successively discriminate
out-of-distribution images. The testing of such image classification for single cell applications
in life science scenarios has yet to be done but could broaden our expertise in quantifying the
influence of prediction uncertainty in deep learning. In this framework, we implemented the
open-set concept on scattering snapshots of living cells to distinguish between unknown and
known cell classes, targeting four different known monoblast cell classes and a single tumoral
unknown monoblast cell line. We also investigated the influence on experimental sample errors
and optimised neural network hyperparameters to obtain a high unknown cell class detection
accuracy. We discovered that our open-set approach exhibits robustness against sample noise, a
crucial aspect for its application in life science. Moreover, the presented open-set based neural
network reveals measurement uncertainty out of the cell prediction, which can be applied to a
wide range of single cell classifications.
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1. Introduction

The human body is composed of a variety of types of cells, where each one has its own biophysical
properties, such as dimension, structure, and function. In other words, cells contain a cell
specific biophysical signature, which allows to distinguish them from each other. However, the
acquisition of useful single cell information in a straightforward continuous and cost-effective
manner remains challenging. To this end, microfluidics enables high-throughput rates at single
cell level, but data elaboration persists being demanding. A key enabling technology for next
generation cell discrimination in flow can be given by deep learning (DL) based neural network
classifiers. Nowadays, cell discrimination is routinely performed by cytometric analysis, based
on surface receptor expression, which is a costly and time intensive procedure [1]. Beyond
that, monoclonal antibodies that bind on cell surface molecules during the cytometric analysis,
may interfere with cell functions, which can complicate cell reuse. Alternatively, a label-free
classification, which preserves the integrity of cell functions is desirable, when cells are analysed
for a therapeutic purpose. In fact, biophysical cell signatures can be useful for their label-free
classification in microfluidics as well as for patient monitoring during a therapy, or to promptly
identify recurrence (e.g., leukaemia or generic bone marrow disease).
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For therapeutic purposes, human peripheral blood mononuclear cells (PBMCs) represent
an appropriate candidate, due to their simple availability. Despite PBMCs having a different
composition, phenotype, and activation status from cells found in intestinal tissue, they are
considered as a liquid biopsy of our body. This latter has drastically revolutionised the field of
clinical oncology, with its possibility of continuous patient monitoring and circulating tumour
cell analysis [2]. Recent advancements in screening of label-free cell information have shown
the possibility to distinguish fractions of cell class and/or states, especially when dealing with
sparsely present cells [3–10]. Beside the single cell recognition, the relative peripheral cell class
count alterations, lower or higher than physiologic one, as well as anomalous cell shapes or
cytoplasm complexity are useful indicators of dysregulated responses to inflammation stimuli
[11,12]. Such investigations are generally performed with classical flow cytometry methods,
which are known as expensive and resource intensive measurement tools. To overcome the
main limitations of classical flow cytometry approaches, DL was recently introduced for the
classification of cells in flow condition [13]. In this, DL processes either phase contrast or
bright-field images as input, while light scattering pattern snapshots are understudied [14–17].
Nevertheless, scattering snapshots provide invaluable cellular information of cell shape and inner
structures, which can significantly assist an individual cell class distinction [14,18–20]. In this
study, we aim to clarify and illustrate the enormous potential of pure light scattering snapshots
obtained in microfluidics, for accurate DL-based cell classification.

Cells are not homogenous objects: they are composed of membranes, cytoplasm, nuclei, and
various organelles which are among the most important contributors to the scattering pattern.
Therefore, scattering pattern direction and width are fundamental measurement parameters to be
considered. For instance, forward scattering (∼0°) reveals significant cell size and inner structure
information. At side direction (5°-30°) nucleus and nucleus over cell ratio are predominant
information parameters, while small internal organelles contribute more at larger angles to the
scattering pattern (∼90°). The backward direction (∼180°) can be useful for membrane roughness
investigations [21,22]. Overall, an intermediate state of forward and side scattering information
offers the most promising approach for label-free cell identification.

In addition to the mentioned heterogeneity of intrinsic cell properties, a crucial point for
the automatic classification of cells via neural networks is the handling of so-called “unknown
unknowns”. In other words, we don’t know what we don’t know [23]. In such cases the
classification model is confident about its choice of classifying a never-before-seen cell class but
is actually performing wrong. In fact, a classification model should not only produce accurate
predictions of known cells, but also detect unknown cells and reject or classify them in a new
class of cells [24–27]. Until now, most existing models for image classification are trained
based on the closed-set assumption, where the test data is assumed to be drawn from the same
distribution of training data [28,29]. In the case of these unknown cells, they must opt for a class
label from the existing known classes thus significantly limiting their applicability in dynamic
and ever-changing cell diagnosis applications. For instance, thresholding the classification score
value for unknown cells in a closed-set scenario proves to be impractical [23,30,31].

This classification problem necessitates the creation of an open-set recognition concept
to classify unknown cells that were not encountered during training while, simultaneously,
achieving highly accurate classification of known cells. To recognize new cell classes, the neural
network-based classifier must project known cell class input in very compact and separated
regions of the features space, to finally distinct distant unknown cells. Hereby, samples included
and excluded in the label space are referred to as knowns and unknowns, respectively. In other
words, open-set based classifiers need to use incomplete knowledge learned from a finite set of
accessible cell classes to devise effective representations able to separate known from unknown
cells [23]. In more detail, when a classification model is applied on open-set recognition tasks,
a semantic shift (e.g., due to the occurrence of new cell classes), or covariate shift emerge in
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the label space [32–35]. Beside the open-set recognition [36–38] also outlier detection [39–42],
anomaly detection (detect any anomalous cells that are derived from the predefined normality
during testing) [43–45] and novelty detection [46–49] are from significant interest for the so
called out-of-distribution detection [23]. OpenMax was the first emergent open-set classifier
designed to address the out-of-distribution problem [31]. From that point onward, other open-set
classifiers have been reported in literature, which apply a minimising of the open-space risk
or using an extreme value theory [30,31,50,51]. However, most open-set recognition methods
use threshold-based strategies, in which the threshold is selected using the knowledge of the
known classes. Thus, without prior knowledge about unknown classes and applying a constant
global threshold will lead to a significant open-set recognition risk. For instance, modifying
the threshold based on the information of unknown class received at the test phase can improve
the robustness of open-set approaches. Another area of investigation would involve the robust
selection of the tail’s size while applying an extreme value theory to model the data distribution’s
tail. In fact, extreme value modelling has been increasingly used to analyse post-processing
scores and enhance the performance of open-set recognition. For the sake of diversity, open-set
classifiers utilise the intuition that new cells to be classified as known or unknown are more
likely to be unknown if they are far away from the training data. To address the open-set
challenge, investigating the ability of classifier to identify unknown class domain, a so called
auxiliary open-set risk (AOSR) DL network was presented recently [52]. The AOSR approach
utilise an instance weighting strategy to align training sample and auxiliary sample, which is
generated through an auxiliary domain that minimises the auxiliary risk, to learn how to recognize
unknown classes. All in all, we define a certain in-distribution, with the target of detection of
out-of-distribution cells under the open-set assumption.

Therefore, we present a simple microfluidic based single cell classification approach from
label-free obtained light scattering snapshots, which can predict known as well as unknown cell
classes thanks to an underlying open-set classifier based on the AOSR principle. In comparison
with previous single cell investigation approaches presented in literature, no matching of scattering
patterns with adequate scattering models is needed [53–57]. Such straightforward approach
significantly reduces the time and computational costs for single cell detection. Moreover, the
acquisition of scattering snapshots in s label-free under flow conditions makes this approach
highly versatile in the application to multiple cell types and sizes. The mentioned DL-based
cell discrimination uses scattering snapshots as input to predict the searched for cell types.
Therefore, the open-set prediction model was first trained with monoblasts. We also investigated
the effect of experimental sample noise, substituting cell data with 10% or 20% of debris (organic
waste left over after a cell dies) snapshots. Note that monoblast subclasses such as monocytes
and macrophages play a primary role during the innate immune response, where macrophages
represent the resident cells in peripheral tissue derived from blood circulating monocytes that can
extravasate from the bloodstream. As proof-of-concept, a monocytic cell line derived from an
acute monocytic Leukaemia patient, named THP-1, was added as an unknown tumour cell class
for the testing phase of the open-set classifier model. Indeed, the obtained classifier was utilized
on a mixed dataset containing both known monoblasts and unknown THP-1 cells allowing the
automatic prediction of all the present cell classes. The presented approach shows high versatility
and could be applied for circulating tumour cell detection in microfluidics, where, in general,
no prior cell knowledge can be used for the model training. In fact, the presented work gives
emphasis to the application of an out-of-distribution classification approach in the biomedical
field to minimize uncertainty in DL classification models.
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2. Materials and methods

2.1. Sample preparation

Cells were recovered from healthy donors after obtaining informed consent, in accordance with
relevant guidelines and regulations. For peripheral blood monocytes and macrophages, a standard
density gradient separation was performed as followed: first, blood was diluted with an equal
volume of phosphate buffered saline (PBS), and then gently layered on with an equal volume
fraction of density gradient medium (Histopaque-1077) using a 50 mL centrifuge tube. After that,
a centrifugation step was performed at 300g⃗ for 30 min and disabled machine brake, resulting in
a visible PBMC ring at the interface between gradient medium and plasma. Cells were collected
and washed in the Erythrocyte lysis buffer, to eliminate a possible contamination. Finally, cells
were cultured in RPMI-1640 medium, supplemented with 10% fetal bovine serum (FBS), 1%
L-Glu and 1% penicillin/streptomycin (Euroclone). Next, PBMC were divided into four culture
flasks (T-75, Corning) to obtain monocytes and to transform monocytes in unpolarized (M0),
M1-polarised (M1) and M2-polarised (M2) macrophage phenotypes. First cells were incubated
for 24 hours at 37°C and 5% CO2. For the monocyte flask, cells in suspension (lymphocytes)
were discarded, while adherent monocytes were diluted in RPMI-1640. Next, in the remaining
three flasks cell medium was substituted with RPMI-1640 and specific macrophage phenotype
generation media (M0=C-28057; M1=C-28055; M2=C-28056) was added following the
manufacturer instructions (Promocell). After 6 days each flask was supplied with a volume of
cell medium equal to the 75% of the initial cell volume (day 0). On day 7 a new aliquot of
cytokine mix (Promocell) was added following the manufacturer instructions. At day 9 cell
medium was aspirated and a fresh medium was added to each flask. At day 10, polarised and
not activated macrophages were detached from the flask surfaces using a cell scraper tool and
subsequently centrifuged at 200g⃗ for 10 min in 15 mL centrifuge tubes. Whereas the THP-1 cell
line (ATCC, Manassas, VA, USA) was directly cultured in RPMI-1640 medium, supplemented
with 10% FBS, 1% L-Glu and 1% penicillin/streptomycin. However, all separated cell classes
were resuspended into complete RPMI-1640 medium, ready to be analysed with the single cell
scattering snapshot approach.

2.2. Microfluidic device and alignment

Continuous measurement of single cell properties was achieved with a microfluidic device,
composed of a supporting geometry fabricated with a 3D printer (Objet30 pro, Stratasys) and a
series of two glass channels (see Fig. 1). Briefly, a round shaped glass channel (R= 50 µm) is
inserted on one side in a hollow square channel (ID= 400 µm), which permits in-flow scattering
snapshot readout of cells, and on the other side immersed in the cell sample. By applying a
certain pressure on the sample liquid (P-pump, Dolomite), cells are pushed through the centreline
of the alignment channel before entering the readout channel. The sample liquid consists of cells
immersed in an alignment medium, consisting of a highly biocompatible viscoelastic polymer
(polyethylene oxide, MW = 4 MDa, Sigma Aldrich) diluted in PBS at 0.4 wt%. However, thanks to
resulting fluid properties, generated by viscoelastic fluid forces, cells are aligned to the centreline
of the alignment channel and subsequently remain aligned at the centreline of the subsequent
readout channel [58]. Note that fluid forces were chosen to prevent cell deformation effects, while
ensuring sufficient cell alignment to the channel centreline. In more detail, cell alignment was
achieved if the following relationship 3Wi β2 L

2R> − ln(3.5β) was satisfied. Where Wi = 2λŪ/2R,
uses λ the relaxation time of the viscoelastic fluid, Ū the average fluid velocity, R the channel
radius, β = r1/R, a nondimensional geometrical channel parameter, with r1 being the cell radius,
and L the channel length [59]. To ensure continuity between the alignment and readout channel,
the alignment section was collinearly inserted in the readout section and sealed with a soft ferrule
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(UP-N-123-03X, Idex). At the end of the readout channel, cells can be recovered for further cell
studies.

Fig. 1. Microfluidic alignment and readout principle. Cells are aligned to the centreline
during their passage in the round shaped alignment channel. This channel is inserted
into a squared channel to allow maximum readout performance, while conserving the cell
alignment. The soft ferrule, which seals the connection between the two different shaped
channels is not shown for easier readability.

2.3. Experimental setup

For this study, we utilised a small angle light scattering apparatus [60], combined with the
previously mentioned microfluidic single cell alignment device to obtain biophysical single cell
information (see Fig. 2). In more detail, during their passage through the readout channel, cells
hit one after another the collimated linear polarised light beam (HeNe with 632.8 nm and 5 mW),
that reveals the optical scattering snapshots of a living cell (in-flow records). The resulting
scattering information is recorded in a continuous angular range from ∼3° to 30° with and an
angular resolution of ∼0.1° using a set of optical lenses and a camera sensor (ORCA Flash 4.0,
Hamamatsu Photonics) with an exposure time of 4 ms, pixel number of 700× 700 and pixel size
of 6,5 µm (see Fig. 2). More detailed information about the scattering snapshot recording is
shown elsewhere [53,60].

2.4. Data preparation

The recorded scattering snapshots are pre-processed by a self-written MATLAB (R2022b,
Mathworks) routine, which uniforms snapshots by automatically detecting the scattering pattern
centroid (scattering angle of 0°), cropping unwanted scattering regions (scattering angle ≤ 3° and
≥33°). For the centroid detection, a binary mask was calculated through an interplay between a
sequence of several image processing filters and functions applied on the raw scattering snapshot.
In more detail, first a 2D gaussian low-pass filter (size 15× 15 pixel and standard deviation of
6) was iteratively applied four times on the snapshot, followed by a spot-enhancement using a
low-light image enhancement based on inversion of low-light image, applying a haze removal
algorithm and an inversion of the enhanced snapshot image. Then, snapshot intensity values
were mapped on new values before a global threshold (Otsu’s method) [61] minimised the
intra class variance between low and high intensity pixels. Thus, connects separated snapshot
components in a unique binary mask, to finally perform a segmentation on the raw scattering
snapshot. Subsequently, a centroid detection function returns the 0° coordinate of the scattering
snapshot. From such a position a donut mask from 3° (radius of 30 pixel) to 33° (radius of 400
pixel) was created and overlaid on the original snapshot to select the region of interest (ROI).
Afterwards, the snapshots were cropped to the ROI, resulting in an image size of 650× 650 pixel,
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Fig. 2. Experimental setup and scattering snapshots. Light passes vertically through the
microfluidic device and generates scattering snapshots when a cell hits the incident light
beam. Typical snapshots for training data (debris, monocyte, M0-, M1- and M2-macrophage)
as well as unknown cell data (THP-1) are illustrated to highlight the different scattering
patterns. All snapshots are recorded with constant camera exposure time.

which subsequently was resized (224× 224 pixel) before passing them to the neural network.
Note that different resize dimensions were tested for the obtained scattering snapshots, while the
mentioned snapshot dimension results in a good compromise between snapshot feature quality
and computational costs (see ESI Fig.S1).

2.5. CNN classification framework

In general, convolutional neural networks (CNN) frameworks consist of 3 main types of layers.
The input layer, which receives the scattering snapshot and communicates image information to
the hidden layers where the actual feature extraction processing is done using the convolutional
filters. Usually, a SoftMax function (closed-set environment) is used as an activation function in
the output layer to perform classification task. The network is trained in backward propagation by
adjusting the value of weighted connections to optimise the loss function, such as cross-entropy
that represents the difference between the output of the SoftMax function and the desired output
to achieve a low classification error in the training data.

2.5.1. Closed-set classifier

For the closed-set assumption, test data is assumed to be drawn from the same distribution of
training data. In other words, the number of input and output class labels is constant. Many
types of CNN can be used for such purposes using a different number of filters and network
architecture. For the intrinsic nature of the experimental scattering data, transfer learning of
existing CNN is challenging since scattering data is monochromatic and presents significant
speckle information as snapshot features. Therefore, we decided to develop from scratch a CNN
architecture, optimised for the used scattering pattern range (3-33°) considering the high dynamic
range of snapshot feature intensities (see Fig. 3).

The close-set CNN architecture was designed to classify four different cell classes, correspond-
ing to four training labels. For this task, along with avoiding network overfitting and guaranteeing
structure robustness for further AOSR implementation, we developed, trained, and tested several
CNN architectures with different numbers and types of layers (see ESI Fig. S3- ESI Table
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Fig. 3. Architecture of the closed-set CNN. The convolutional layers perform the feature
extraction from the input image and are connected to the flatten layer, which is joined to a
series of dense layers and dropout layers constituting the fully connected layer needed to
perform classification. The last layer (SoftMax layer) normalises the scores and predicts the
cell class.

S1). The most suitable CNN architecture represents the best compromise between accuracy,
loss (overfitting monitoring) and computational time (see ESI Fig. S4). In more detail, the
CNN architecture is composed by an input layer with a dimension of 224× 224× 1, alternating
convolution and max pooling layers depicted for features extraction, followed by a sequence
of fully connected layers, while the last layer is a SoftMax activation function layer, needed
to perform the closed-set classification (see ESI Fig. S3b). Beside the mentioned monoblast
classification a pre-screening convolution neural network -regarding cell versus not cell snapshots-
was developed using a binary SoftMax function. For this purpose, a CNN structure similar to
the aforementioned closed-set model was used, resulting in circa 5000 labelled monoblasts and
∼7000 debris snapshots. The aim of this pre-screening step was to provide a dataset without cell
debris content and subsequently, to test model robustness of newly developed open-set models,
incorporating a defined content of no-cell material.

2.5.2. Open-set classifier

Open-set recognition for scattering snapshots of living cells was implemented based on the
AOSR approach [52], which utilised an instance weighting strategy to align training samples and
auxiliary samples, which aims to recognize unknown (not seen during training) cell classes by
minimising the auxiliary open space risk. In more detail, AOSR first defines the label space of
known cell classes (defined as correct known classes), while the remaining space is allocated
as unknown class. Therefore, we train the closed-set CNN architecture to classify the known

Fig. 4. Closed-set versus open-set classifier (AOSR) architecture. The closed-set environ-
ment misclassifies unknown samples (black dots). AOSR uses the penultimate layer (before
SoftMax) of closed-set CNN to build an encoder whose outputs are used as a decoder as
input to classify unknown cell classes.
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cell classes. Then, we use the last layer before the SoftMax function (penultimate CNN layer)
as the encoded feature vector to train the AOSR algorithm (see Fig. 4). Next, we initialised the
auxiliary domain of the network architecture by randomly generating samples in the encoded
feature space and estimated the weights between the new encoder and SoftMax. The higher
such an estimated weight, the more likely a sample belongs to known classes. The main tuning
parameter is β, which is important to define an ideal auxiliary domain distribution and therefore
tuning the feature space to correctly classify unknown samples. More detailed information about
AOSR can be seen elsewhere [52].

3. Results and discussion

In this work, we tested monoblast prediction accuracy in a real-world life-science application.
We investigated known and unknown cell classes with an open- and closed-set CNN architecture
using scattering snapshot with different percentages of experimental sample error (debris) as
input to minimise prediction uncertainty. Therefore, one acute monocytic leukaemia cell line
(unknown) and four monoblast (known) cell classes were analysed separately with an optical
cell investigation tool using a microfluidic cell alignment approach to retrieve the search for
single cell scattering snapshots. The separate measurement of different cell classes allowed us to
create labelled training samples, which are needed for the classifier model (see Fig. 5). Moreover,
in-flow records are classified in cell versus no-cell snapshots using a closed-set binary classifier.
This pre-screening step permits the adjustment of the amount of experimental sample error by
removing cell snapshots and replacing them with debris content.

Fig. 5. Working principle of cell class prediction with a CNN model from a fresh blood
sample using single cell scattering snapshots. The classifier model is altered for closed- and
open-set application to predict known and unknown cell classes at the same time.

Then, each separately investigated cell class was diluted in viscoelastic cell alignment medium.
We prepared living cell samples of ∼1.25 * 105 cells mL−1 to ensure a throughput rate of ∼2
cells sec−1 passing through the readout laser beam. Each scattering event was recorded as a
snapshot for further image analysis and cell class prediction. Note that cell throughput -for the
used camera sensor- can be increased up to ∼50 cell sec−1 by simply changing the fluid flow rate,
which in this proof-of-concept was not needed.

First, the pre-processing of scattering snapshot was calibrated and tested with polystyrene
beads of different dimensions (see ESI Fig.S2). In this process, snapshots are uniformed to
reduce scattering centroid misalignment due to experimental variations in the microfluidic cell
alignment. In fact, such initial snapshot normalisation processes significantly improve further
CNN performances. Even if an excessive pre-processing may lead to a natural distortion of the
raw snapshot dataset, a proper balance significantly improves misclassification [62] and therefore
speeds-up the classification model training process. However, after calibration, we applied the
pre-screening procedure on in-flow records before a binary DL-based cell prediction approach
identified cell versus not cell snapshots. Thus, initial operations, which involved removing debris
or possible cell agglomerates from the sample data, had a significant improvement on the training
performance of the classifier model. Note that each scattering event during an in-flow record
was considered for this process, which enables an automation of the measurement process. In
other words, pre-screening after snapshot normalisation removes the main part of experimental
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errors from the sample data. In fact, debris snapshots were used as experimental sample error
dataset for the investigation of CNN robustness against noisy data. In other words, sample noise
is not considered to improve unknown cell detection accuracy, while it can help to simulate a
more realistic life-science measurement scenario, where cell heterogeneity and sample noise are
common.

Next, we predicted four different monoblast cell classes (M0-, M1- and M2-macrophages as
well as monocytes) using a widely used closed-set prediction architecture, based on a SoftMax
activation function. A part of the previously obtained not-cell snapshots was reused for the
CNN training to investigate the influence of cell debris on the classification accuracy and overall
network robustness. Note that not-cell snapshot samples were randomly selected from the debris
dataset to replace in equal parts content of each investigated cell class (dataset number remains
constant). Next, we implemented an AOSR open-set approach to the closed-set architecture and
optimised it for an unknown (THP-1) cell class. Lastly, we performed a prediction of mixed
known and unknown cell classes using a closed-set as well as open-set architecture to show the
model performance, regarding prediction uncertainty.

3.1. Closed-set prediction

We performed a closed-set prediction for M0-, M1- and M2-macrophages as well as monocytes
using different CNN architecture (see ESI Fig. S3). We trained the classifier model with 10, 15
and 20 epochs using 400 cells (80% training, 20% validation) for each cell class. Moreover, we
substituted 10% as well as 20% of cell data with not-cell ones (debris) to investigate the influence
of experimental measurement noise on the prediction outcome. We tested and computed confusion
matrices for the different CNN architectures with a different testing dataset of 221, 332, 179 and
65 cells for M0-, M1-, M2- macrophages and monocytes respectively. We observed for epoch 10
the highest misclassification for M1-macrophages, which were classified as M2-macrophages for
training data without debris content. While for increasing no-cell content M1-macrophages were
better predicted, and a higher misclassification for M2-macrophages as M1-macrophages was
observed for all investigated model architectures. This misclassification was observed for the
CNN - 2, 3 and 4 architectures, while for CNN - 1 the misclassification trend remained constant
(see ESI Fig. S4). According to the misclassification performance and Matthew correlation
coefficient (MCC) calculations (see ESI Fig. S5) CNN - 2 show the best performance for all
investigated measurement conditions.

Therefore, we focused on the CNN - 2 model and investigated the training and validation
accuracy, as well as confusion matrices (see Fig. 6). Confusion matrix outcomes with epoch
15 are shown in Fig. 6(b). Here, the misclassification ratio between M1- and M2-macrophages
is changing for different amounts of no-cell content. This implies that no-cell content strongly
influences M1, moderate influence M2 and not significantly influences M0 as well as monocytes
predictions. However, higher epoch numbers show a significant increase of the model performance
for only cell data, while for the dataset with no-cell content, the training and validation accuracy
remains constant (see Fig. 6(a)). In fact, a higher epoch number could possibly further increase
the performance with no-cell data for the presented CNN architecture. Albeit it does not
automatically ensure a good open-set performance and does not guarantee closed-set overfitting
avoidance. Note that validation behaviour with no-cell content is more unstable compared to
only cell content datasets.

3.2. Snapshot features

A DL-based classification model technique must have a robust performance that requires trading
off between maximising the recognition rate and minimising the inclusion of novel data. The
open-set prediction goal is to minimise the open space risk to capture the risk of labelling the
unknown cells as known [23]. Therefore, we had a closer look on the snapshot input data using
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Fig. 6. Training and validation process for the closed-set CNN architecture. (a) Accuracy
increase and loss decrease for higher epoch values, while experimental sample error of 10%
and 20% of no-cell content in the dataset (size of the training dataset is constant), respectively
decrease accuracy and vice versa increase the obtained loss outcome. Each training process
was performed for a fixed epoch number of 10, 15 and 20, which is indicated with increasing
transparency for higher epoch numbers. (b) Confusion matrix (for a testing dataset composed
of 221, 332, 179 and 65 cells for M0-, M1-, M2- macrophages and monocytes respectively)
outcomes for the closed-set model with different percentages of no-cell content for an epoch
number of 15 are presented.

t-SNE for dimensionality reduction of snapshot features. Figure 7 shows t-SNE visualisation
results of cell snapshot features of all investigated cell classes (320 cells respectively for M0-,
M1-, M2- macrophages and monocytes, as well as 410 cells for THP-1). Latter cells are acute
monocytic leukaemia cells, which are used as proof-of-concept for an unknown cell class, which
was not seen by the closed-set architecture during the training phase.

No evident clustering or separation of an individual cell class was noticed for raw data features
(input for closed-set CNN), while a strong clustering is present for input features for the AOSR
algorithm. This outcome indicates that THP-1 cells share significant snapshot features with all
other cell classes except M2-macrophages, which would inhibit a correct closed-set prediction.
Note that M2-macrophages show significantly different scattering snapshot images compared to
the other cell classes, which is in-line with the t-SNE representation. In fact, due to its closed-set
nature, a standard classification model will link an unknown cell (THP-1) to the class with the
maximum score given by the SoftMax function, leading to a misclassification, which clearly
demonstrates the need of an open-set recognition approach.
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Fig. 7. The t-SNE visualisation (Python: sklearn.manifold.TSNE applying a perplexity
value of 100) of snapshot features of the closed-set CNN and feature input for AOSR
extracted from the closed-set CNN. The presented AOSR features are extracted from the
penultimate layer of the closed-set CNN - 2 architecture using an epoch of 15.

3.3. Open-set prediction

For open-set cell class recognition, during the training phase we do not know the number and
feature space of all classes to predict, so precedent modelling of an unknown class is challenging.
Therefore, almost all existing open-set approaches include standard neural networks architectures,
which are first trained in a closed- set environment and afterwards adapted to detect unknown
sample classes.

In this work, we followed this concept and utilised the best performing closed-set architecture,
modified for open-set recognition, applying the AOSR approach. Such unknown cell class
detection architecture was first tested for different combinations of epoch numbers of closed-
and open-set architecture. For this purpose, the decoder training of AOSR, needs a combination
of two loss functions, governed by two different epoch values, where epoch 2 was randomly
chosen to be 10 times epoch 1. In more detail, the AOSR algorithm was characterised by the
first loss function, which is a classical sparse categorical cross entropy CNN function. This
function is needed to fit the new classifier and considering the presence of a new class - the
unknown one - for which the closed-set CNN was not trained. Subsequently, the second loss
function, defined as the “auxiliary risk” loss function, manages the auxiliary domain and its
risk to detect unknown cell class. In fact, the latter loss function uses a significantly higher
epoch number to perform the proper AOSR training and learning, while the first one fits the
classifier model structure with a comparatively small epoch number. An epoch number of 10,
15 and 20 was tested for the closed-set architecture, while a combination of epoch number 2,
3, 4 and 5, respectively 20, 30, 40 and 50 were tested for the AOSR model (see ESI Table
S2). All possible epoch number combinations over a wide range of β (0.007-1.5) were trained
and tested with scattering snapshots -including also experimental no-cell content of 10% and
20%- to obtain the best performing training accuracy and unknown cell class detection (see ESI
Table S2). Results indicate an epoch number of 15 for the closed-set architecture combined
with an AOSR epoch 1= 4 and epoch 2= 40 for the open-set architecture as the best performing
parameter combination. Next, we investigated training accuracy as well as unknown cell class
detection for THP-1 and test data (known cell classes) versus β using the best performing epoch
number combination (15, 4 and 40). We tested unknown cell class detection with a dataset of 410
THP-1, 221, 182, 179 and 65 M0-, M1-, M2- macrophages and monocytes respectively. Note
that β is an hyperparameter contributing to the definition of an auxiliary domain distribution and
therefore defines the importance of the correctly classified unknown sample domain (see Fig. 8).
In fact, for higher β, the open-set architecture accuracy significantly drops down, while unknown
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cell detection increases. Therefore, a compromise between CNN accuracy and unknown cell
detection precision must be established by selecting the best performing β. We selected a β-value
of 0.1 (dashed grey line in Fig. 8(a)) as the best combination of cell prediction as well as unknown
cell detection accuracy (see MCC outcome in ESI Fig. S6 and best performing epoch number
combination in ESI Table S2). In more detail, results (see THP-1 plot in Fig. 8(a)) show a
significantly higher unknown cell detection for training data without addition of no-cell content
(96% at β= 0.1) compared to data with different level of no-cell content (78% for 20% no cell
content and 80% 10% no cell content at β= 0.1), which underlines the need of a scattering
snapshot pre-processing for precise unknown cell detection. In fact, a higher training accuracy
results in a higher THP-1 cell detection (see THP-1 plot in Fig. 8(a)), but also in a higher unknown
cell detection of known sample data (see Test plot in Fig. 8(a)). On the contrary lower network
accuracy leads to higher unknown detection, with also higher misclassification of known cells as
unknown ones.

Fig. 8. Open-set outcome for CNN - 2 using an epoch of 15 combined with AOSR using
AOSR epoch 1= 4 and AOSR epoch 2= 40. (a) Cell class prediction accuracy and unknown
(THP-1) cell class detection rate are presented for alternating β and different levels of
experimental sample error. The best performing β value for CNN accuracy and unknown
cell detection is indicated with a grey dashed line. (b) The confusion matrices of the closed
CNN - 2 are shown for different levels of experimental sample error using a snapshot dataset
of 221, 182, 179, 65 and 410 cells for M0-, M1-, M2- macrophages, monocytes, and THP-1
respectively.

However, the open-set misclassification with different amounts of no-cell content showed a
similar trend to the closed-set architecture, where M1-macrophages are more likely classified as
M2-macrophages. A minor misclassification between M1- and M2-macrophages was expected
due to the cell differentiation process from peripheral blood monocytes. Furthermore, M1 were
more likely classified as unknown cells, followed by M0, while M2 were less represented in
unknown cell predictions. This finding is in good agreement with t-SNE investigations (see
Fig. 7) and scattering snapshot representations illustrated in Fig. 2.
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4. Conclusion

The aim of this work is to demonstrate the high potential of pure light scattering snapshots in
CNN-based classification models. Additionally, we report the impact of uncertainty in single cell
distinction, when predicting unknown cell classes, which is a relatively unexplored field in life
science applications using DL-based classification models. For instance, standard metrics, which
evaluate DL models measure the overall model performance on a limited dataset, provide no
indication of the model confidence in the correctness of individual predictions of unknown cells,
which were not seen during the training phase. Furthermore, models cannot be easily updated
after initial model testing. In fact, resulting in prediction failures, when a model is faced with
out-of-distribution data.

Therefore, we developed different CNN architectures to predict unknown cell classes from scat-
tering snapshots in concomitance of experimental measurement noise. In addition, in comparison
with standard flow cytometric approaches, which are known to have high instrumentation and
service costs, the presented measurement method is straightforward and cost-effective, permitting
a classification of cell classes without large numbers of training data and resource-intensive
cell labelling. More importantly, measurements are realised using a lab-on-a-chip approach
permitting the measurement of living cells in suspension, which are also collectable and re-usable
for other diagnostic investigations or therapeutic approaches. In fact, the measurement procedure
for scattering snapshots was designed to be easily automated and versatile.

We investigated scattering snapshots of four monoblast cell classes (known classes) and an
acute monocytic leukaemia cell line (unknown class). First, we trained a classifier model,
through which we pre-processed snapshots to separate non-cell (debris) from cell content. This
initial image processing step allowed us to subsequently substitute cell snapshots with a specific
number of experimental sample noise in the labelled training dataset and analyse its effect on
the prediction accuracy. Results show for known classes (seen during the training phase) a
high cell class prediction accuracy, using a CNN closed-set architecture. Because unknown cell
classes would be mis-classified with a closed-set architecture, we modified the CNN-model and
implemented the open-set CNN based AOSR architecture. Such network modification allowed us
to detect unknown from known cell classes distribution without significant reduction of known
cell class prediction accuracy. The interplay of closed-set accuracy and out-of-distribution
recognition was optimised for scattering snapshots, showing high detection accuracy for all
investigated cell classes.

In conclusion, we presented a procedure able to label-free predict out-of-distribution cells
from scattering snapshots, using an open-set CNN model, which significantly broadens the
scope of application for the presented cell signature classification method. Our approach can
be easily adapted to accommodate other single cell image data inputs. We firmly believe that
the conduction of uncertainty studies at single cell level will revolutionise the trust in cell
classification and facilitate circulating tumour cell detection in microfluidics, where no training
data is often unavailable.
Acknowledgments. We thank Raffaele Mennella for his proofreading of the manuscript.

Disclosures. The authors declare no conflicts of interest related to this article.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

Supplemental document. See Supplement 1 for supporting content.

References
1. H. T. Maecker and J. P. McCoy Jr, “A model for harmonizing flow cytometry in clinical trials,” Nat. Immunol. 11(11),

975–978 (2010).
2. S. N. Lone, S. Nisar, T. Masoodi, M. Singh, A. Rizwan, S. Hashem, W. El-Rifai, D. Bedognetti, S. K. Batra, M.

Haris, A. A. Bhat, and M. A. Machaet, “Liquid biopsy: A step closer to transform diagnosis, prognosis and future of
cancer treatments,” Mol. Cancer 21(1), 79 (2022).

https://doi.org/10.6084/m9.figshare.23813541
https://doi.org/10.1038/ni1110-975
https://doi.org/10.1186/s12943-022-01543-7


Research Article Vol. 14, No. 10 / 1 Oct 2023 / Biomedical Optics Express 5073

3. J. Guck and E. R. Chilvers, “Mechanics meets medicine,” Sci. Transl. Med. 5(212), 212fs41 (2013).
4. H. Chen, Z. Zhang, and B. Wang, “Size- and deformability-based isolation of circulating tumor cells with microfluidic

chips and their applications in clinical studies,” AIP Adv. 8(12), 120701 (2018).
5. P. Rosendahl, K. Plak, A. Jacobi, M. Kraeter, N. Toepfner, O. Otto, C. Herold, M. Winzi, M. Herbig, Y. Ge, S.

Girardo, K. Wagner, B. Baum, and J. Guck, “Real-time fluorescence and deformability cytometry,” Nat. Methods
15(5), 355–358 (2018).

6. O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi,
M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability
cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).

7. D. R. Gossett, H. T. K. Tse, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Rao, A. T. Clark, and D. Di Carlo,
“Hydrodynamic stretching of single cells for large population mechanical phenotyping,” Proc. Natl. Acad. Sci.
109(20), 7630–7635 (2012).

8. M. Masaeli, D. Gupta, S. O’Byrne, H. T. K. Tse, D. R. Gossett, P. Tseng, A. S. Utada, H. J. Jung, S. Young, A. T.
Clark, and D. Di Carlo, “Multiparameter mechanical and morphometric screening of cells,” Sci. Rep. 6(1), 37863
(2016).

9. T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, D. Davies, A. Filby, A. E. Carpenter,
and P. Rees, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nat. Commun. 7(1), 10256
(2016).

10. D. Rossi, D. Dannhauser, B. M. Nastri, A. Ballini, A. Fiorelli, M. Santini, P. A. Netti, S. Scacco, M. M. Marino, F.
Causa, M. Boccellino, and M. Di Domenico, “New trends in precision medicine: a pilot study of pure light scattering
analysis as a useful tool for non-small cell lung cancer (NSCLC) Diagnosis,” J. Pers. Med. 11(10), 1023 (2021).

11. L. Ziegler-Heitbrock, “Monocyte subsets in man and other species,” Cell. Immunol. 289(1-2), 135–139 (2014).
12. D. Min, B. Brooks, J. Wong, R. Salomon, W. Bao, B. Harrisberg, S. M. Twigg, D. K. Yue, and S. V. McLennan,

“Alterations in monocyte CD16 in association with diabetes complications,” Mediators Inflamm. 2012, 649083
(2012).

13. J. Sun, L. Wang, Q. Liu, A. Tárnok, and X. Su, “Deep learning-based light scattering microfluidic cytometry for
label-free acute lymphocytic leukemia classification,” Biomed. Opt. Express 11(11), 6674–6686 (2020).

14. M. Shifat-E-Rabbi, X. Yin, C. E. Fitzgerald, and G. K. Rohde, “Cell image classification: a comparative overview,”
Cytometry Part A 97(4), 347–362 (2020).

15. D. Arifler, C. MacAulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering
patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express 5(2),
485–498 (2014).

16. X. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt.
Express 15(17), 10562–10575 (2007).

17. S. K. Yarmoska, S. Kim, T. E. Matthews, and A. Wax, “A scattering phantom for observing long range order with
two-dimensional angle-resolved Low-Coherence Interferometry,” Biomed. Opt. Express 4(9), 1742–1748 (2013).

18. A. Merino, L. Puigví, L. Boldú, S. Alférez, and J. Rodellar, “Optimizing morphology through blood cell image
analysis,” Int. J. Lab. Hematol. 40, 54–61 (2018).

19. N. Tatsumi and R. V. Pierre, “Automated image processing: past, present, and future of blood cell morphology
identification,” Clin. Lab. Med. 22(1), 299–315 (2002).

20. I. Kviatkovsky, A. Zeidan, D. Yeheskely-Hayon, E. L. Shabad, E. J. Dann, and D. Yelin, “Measuring sickle cell
morphology during blood flow,” Biomed. Opt. Express 8(3), 1996–2003 (2017).

21. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells:
orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).

22. J. J. Wang, L. Han, Y. P. Han, G. Gouesbet, X. Wu, and Y. Wu, “Shaped beam scattering from a single lymphocyte
cell by generalized Lorenz–Mie theory,” J. Quant. Spectrosc. Radiat. Transf. 133, 72–80 (2014).

23. A. Mahdavi and M. Carvalho, “A survey on open set recognition,” In 2021 IEEE Fourth International Conference on
Artificial Intelligence and Knowledge Engineering (AIKE), IEEE 37–44 (2021).

24. D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mane, “Concrete problems in AI safety,” ´
arXiv, arXiv:1606.06565 (2016).

25. N. A. Smuha, “The EU approach to ethics guidelines for trustworthy artificial intelligence,” Computer Law Review
International 20, 97 (2019)..

26. B. Shneiderman, “Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy
human-centered ai systems,” ACM Transactions on Interactive Intelligent Systems 10, 26 (2020).

27. S. Mohseni, H. Wang, Z. Yu, C. Xiao, Z. Wang, and J. Yadawa, “Practical machine learning safety: A survey and
primer,” arXiv, arXiv,2106.04823, 4 (2021).

28. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,”
Communications of the ACM 60, 6 (2012).

29. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:Surpassing human-level performance on
imagenet classification,” 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015,
pp. 1026-1034.

30. W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open set recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence 35, 757 (2013).

https://doi.org/10.1126/scitranslmed.3007731
https://doi.org/10.1063/1.5072769
https://doi.org/10.1038/nmeth.4639
https://doi.org/10.1038/nmeth.3281
https://doi.org/10.1073/pnas.1200107109
https://doi.org/10.1038/srep37863
https://doi.org/10.1038/ncomms10256
https://doi.org/10.3390/jpm11101023
https://doi.org/10.1016/j.cellimm.2014.03.019
https://doi.org/10.1155/2012/649083
https://doi.org/10.1364/BOE.405557
https://doi.org/10.1002/cyto.a.23984
https://doi.org/10.1364/BOE.5.000485
https://doi.org/10.1364/OE.15.010562
https://doi.org/10.1364/OE.15.010562
https://doi.org/10.1364/BOE.4.001742
https://doi.org/10.1111/ijlh.12832
https://doi.org/10.1016/S0272-2712(03)00076-3
https://doi.org/10.1364/BOE.8.001996
https://doi.org/10.1529/biophysj.104.042135
https://doi.org/10.1016/j.jqsrt.2013.07.012
https://doi.org/10.48550/arXiv.1606.06565
https://doi.org/10.9785/cri-2019-200402
https://doi.org/10.9785/cri-2019-200402
https://doi.org/10.1145/3419764
https://doi.org/10.48550/arXiv.2106.04823
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TPAMI.2012.256
https://doi.org/10.1109/TPAMI.2012.256


Research Article Vol. 14, No. 10 / 1 Oct 2023 / Biomedical Optics Express 5074

31. A. Bendale and T. Boult, “Towards open world recognition,” in IEEE Conference on Computer Vision and Pattern
Tecognition, 2015.

32. D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural
networks,” arXiv, arXiv:1610.02136 (2017)..

33. S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different
domains,” Machine Learning 79, 151 (2010).

34. D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader and artier domain generalization,” in Proceedings
of the IEEE International Conference on Computer Vision, (2017).

35. M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing 312, 135 (2018).
36. T. E. Boult, S. Cruz, A. R. Dhamija, M. Gunther, J. Henrydoss, and W. J. Scheirer, “Learning and the unknown:

Surveying steps toward open world recognition,” in Proceedings of the AAAI conference on artificial intelligence,
Vol. 33, No. 01 (2019).

37. C. Geng, S. J. Huang, and S. Chen, “Recent advances in open set recognition: A survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence 33, 3614 (2020).

38. A. Mahdavi and M. Carvalho, “A survey on open set recognition,” arXiv, arXiv:2109.00893 (2021).
39. C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional data,” in Proceedings of the 2001 ACM SIGMOD

international conference on Management of Data, (2001).
40. V. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial intelligence review 22, 85 2004.
41. I. Ben-Gal, “Outlier detection,” in Data Mining and Knowledge Discovery Handbook (Springer, 2005.)
42. H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier detection techniques: A survey,” IEEE Access 7, 107964

(2019).
43. G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for anomaly detection: A review,” arXiv,

arXiv:2007.02500 (2020).
44. S. Bulusu, B. Kailkhura, B. Li, P. K. Varshney, and D. Song, “Anomalous example detection in deep learning: A

survey,” IEEE Access 8, 132330 2020.
45. R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” arXiv, arXiv:1901.03407 (2019).
46. M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty detection,” Signal Processing 99,

215 (2014).
47. D. Miljkovic, “Review of novelty detection methods,” The 33rd International Convention MIPRO, IEEE (2010).
48. M. Markou and S. Singh, “Novelty detection: a review—part 1: statistical approaches,” Signal Processing 83, 2481

(2003).
49. M. Markou and S. Singh, “Novelty detection: a review—part 2: neural network based approaches,” Signal Processing

83, 107964 (2003).
50. L. P. Jain, W. J. Scheirer, and T. E. Boult, “Multi-class open set recognition using probability of inclusion,”

In Computer Vision–ECCV 2014: 13th European Conference, Proceedings, Part III 13 (Springer International
Publishing, 2014), pp. 393–409 .

51. Z. Ge, S. Demyanov, Z. Chen, and R. Garnavi, “Generative openmax for multi-class open set classification,” arXiv,
arXiv:1707.07418 (2017).

52. Z. Fang, J. Lu, A. Liu, F. Liu, and G. Zhang, “Learning bounds for open-set learning,” International conference on
machine learning. PMLR, 3122–3132 (2021).

53. D. Dannhauser, D. Rossi, M. Ripaldi, P. A. Netti, and F. Causa, “Single-cell screening of multiple biophysical
properties in leukemia diagnosis from peripheral blood by pure light scattering,” Sci. Rep. 7(1), 12666 (2017).

54. D. Dannhauser, D. Rossi, F. Causa, P. Memmolo, A. Finizio, T. Wriedt, J. Hellmers, Y. Eremin, P. Ferraro, and P. A.
Netti, “Optical signature of erythrocytes by light scattering in microfluidic flows,” Lab Chip 15(16), 3278–3285
(2015).

55. D. Dannhauser, D. Rossi, A. T. Palatucci, V. Rubino, F. Carriero, G. Ruggiero, M. Ripaldi, M. Toriello, G. Maisto,
P. A. Netti, G. Terrazzano, and F. Causa, “Non-invasive and label-free identification of human natural killer cell
subclasses by biophysical single-cell features in microfluidic flow,” Lab Chip 21(21), 4144–4154 (2021).

56. D. Dannhauser, D. Rossi, P. Memmolo, A. Finizio, P. Ferraro, P. A. Netti, and F. Causa, “Biophysical investigation of
living monocytes in flow by collaborative coherent imaging techniques,” Biomed. Opt. Express 9(11), 5194–5204
(2018).

57. D. Dannhauser, D. Rossi, V. De Gregorio, P. A. Netti, G. Terrazzano, and F. Causa, “Single cell classification of
macrophage subtypes by label-free cell signatures and machine learning,” R. Soc. Open Sci. 9(9), 220270 (2022).

58. D. Dannhauser, F. Causa, E. Battista, A. M. Cusano, D. Rossi, and P. A. Netti, “In-flow real-time detection of
spectrally encoded microgels for miRNA absolute quantification,” Biomicrofluidics 10(6), 064114 (2016).

59. M. I. Maremonti, V. Panzetta, D. Dannhauser, P. A. Netti, and F. Causa, “Wide-range viscoelastic compression forces
in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses,” J. R. Soc. Interface
19(189), 20210880 (2022).

60. D. Dannhauser, G. Romeo, F. Causa, I. De Santo, and P. A. Netti, “Multiplex single particle analysis in microfluidics,”
Analyst 139(20), 5239–5246 (2014).

61. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. 9(1), 62–66
(1979).

62. J. Šťastný and M. Minařík, “A Brief Introduction to Image Pre-Processing for Object Recognition,” (2007).

https://doi.org/10.48550/arXiv.1610.02136
https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1109/TPAMI.2020.2981604
https://doi.org/10.1109/TPAMI.2020.2981604
https://doi.org/10.48550/arXiv.2109.00893
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1109/ACCESS.2019.2932769
https://doi.org/10.48550/arXiv.2007.02500
https://doi.org/10.1109/ACCESS.2020.3010274
https://doi.org/10.48550/arXiv.1901.03407
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.sigpro.2003.07.018
https://doi.org/10.1016/j.sigpro.2003.07.019
https://doi.org/10.48550/arXiv.1707.07418
https://doi.org/10.1038/s41598-017-12990-4
https://doi.org/10.1039/C5LC00525F
https://doi.org/10.1039/D1LC00651G
https://doi.org/10.1364/BOE.9.005194
https://doi.org/10.1098/rsos.220270
https://doi.org/10.1063/1.4967489
https://doi.org/10.1098/rsif.2021.0880
https://doi.org/10.1039/C4AN01033G
https://doi.org/10.1109/TSMC.1979.4310076

